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Abstract-An ideal fiber composite is defined as one with parallel circular fibers forming a regular array. 
We consider how the thermal conductivity transverse to the overall fiber direction is affected by departures 
from the ideal geometry, such as irregular stacking pattern, misalignment of fibers and unequal or non- 
circular cross sections. Illuminating examples are discussed, quantitatively and qualitatively. In particular, 
we derive an effective-medium result for slightly misaligned fibers. It is found that for fiber concentrations 
not close to a percolation threshold, the effect of non-ideal geometry is normally too small (< 1% in many 

realistic examples) to be of any practical importance. 

1. INTRODUCTION 

WE CONSIDER conduction perpendicular to the fiber 
orientation in a fiber composite. By an ideal fiber 
geometry we mean that the fibers are infinitely long, 
of equal circular cross section and stacked in a regular 
array, such as to give overall isotropic conductivity 
transverse to the fibers. The purpose of this paper 
is to discuss systematically how the conductivity is 
affected by deviations from the ideal geometry, such 
as irregularities in the stacking, misalignments of the 
fibers and deviations from equal and circular cross 
sections. Through the presentation of a number of 
representative examples, which are treated quan- 
titatively or qualitatively, we shall compare the 

importance of various types of non-ideal geometric 
features. 

Several recent papers have dealt with the transverse 
conductivity of fiber composites and results we shall 
require are implicitly contained in some of them [l- 

91. For general aspects of transport in inhomogeneous 
materials, the reader is referred to recent reviews [l& 
121. Our geometry is essentially equivalent to that with 
disks distributed in a plane. Some recent works refer 
to such two-dimensional systems with random dis- 
tributions of disks [13-l 51 and to the effective con- 
ductivity of regular arrays of cylinders with square or 
circular cross sections [l, 2, 161. The results obtained 
in this paper apply also to the electrical conductivity, 
the dielectric constant and the magnetic permeability. 

Let the conductivities of the fibers and the matrix 
be k, and k, and the effective transverse conductivity 
of the composite be k,,. The contrast between the fiber 
and the matrix is defined as the conductivity ratio 

LY = k,/k,. The volume fractions of the fibers and the 
matrix are f, and 1 -f,, respectively. For a certain 
stacking geometry, the percolation thresholdf, is that 
volume fraction for which fibers begin to touch so as 
to form a continuous path through the composite. 

It will be assumed that the fibers have the higher 

conductivity, i.e. the contrast LX > 1. Results for c1 < 1 
follow from the reciprocity theorem, which holds in 
two dimensions for the interchange of phases without 
altering the phase boundaries [ 17, 181 

ke&,rf, ;kz> 1 -f&&f, ;k,, 1 -f’J = k,k,. 

(1) 

2. PERIODIC AND RANDOM STACKING OF 

FIBERS 

In the dilute limit, f, CC 1, there is negligible inter- 

action between the fibers and the effective conductivity 
is independent of the stacking geometry. For parallel 
fibers with randomly oriented elliptical cross sections, 
one then has [lo] 

k, 
k2+A,(l;, -k2)’ (2) 

HereA, =a/(a+l~),A,=b/(a+b),whereaandbare 
the semiaxes of the elliptical cross section. 

When going beyond the dilute limit, kef must be 

calculated numerically. There are five symmetrically 
different ways of stacking parallel cylinders in regular 
arrays. Two of them, with hexagonal and square pat- 
terns respectively, give isotropic conductivities in the 
plane perpendicular to the fiber axis. Several authors 
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NOMENCLATURE 

A,,.42 semiaxes ratios 
(1. h semiaxes 
D specimen size 
f’ phase volume fraction 

.f’l fiber volume fraction 
K normalized thermal conductivity 
K, conductivity tensor 

k thermal conductivity 

k, conductivity of fiber 

k2 conductivity of matrix 
L fiber length 
R, Y fiber radius 
r position vector 
.Y,Y. -_. 9’. _r’. Z’ Cartesian coordinates. 

Greek symbols 
s! conductivity ratio, fiber to matrix 

k,/kz 
II fiber tilt angle 
Al) r.m.s. fiber tilt angle. 

Subscripts 
1 liber 
2 matrix 

3 clustered region, considered as a separate 

phase 
C percolation threshold 
chq composite with checkerboard geometry 
clu composite with clustering 
ei effective conductivity transverse to fiber axes 
cff effective property of composite 
c effective property of composite 
HS Hashin-Shtrikman coated cylinder 

geometry 
hex composite with fibers in hexagonal 

stacking pattern 
m summation index. I, 2, 
ran composite with fibers in random lateral 

stacking 
sqr composite with fibers in a square stacking 

pattern. 

[I, 2, 161 have considered the square lattice array. Let 
the fiber radius be R and the lattice parameter be CI. 
The volume fraction of fibers is .f’= nR’/a’ and the 
percolation threshold is fi = 7c/4 x 0.785. Perrins et 
(11. [I] calculated the effective conductivity, k,,,, of 
this system for some contrasts cr. We have performed 
similar calculations (as described in ref. [16] and 
extended in the present work) to obtain kchq for other 
a-values of interest. Perrins et al. [I] also calculated the 
effective conductivity, khcrr for a hexagonal stacking of 
circular fibers. In that case, the percolation threshold 
is.A = n/(24,3) z 0.907. 

centered at r. For increasing 1, ,f(r) will first fluctuate 
on the microscale, then take a well-defined value 
(although with some ‘noise’) on the mesoscale, and 
eventually approach the overall volume fraction 
,f’, = (j(r)) on the macroscale. Here (. .> denotes a 
spatial average over the entire specimen. Similarly, WC 
can define a local conductivity on the mesoscale in the 
composite. k,,,,(r). 

Kim and Torquato [ 14, 151 calculated the effective 
transverse conductivity. k,,,, for a random ‘equi- 
librium’ distribution of parallel circular fibers. The 
distribution was essentially generated by starting from 
the square-lattice array, and then performing a long 
sequence of small random movements of the fibers. 
while keeping them parallel. By construction the cal- 
culations are limited to.7, < n/4. Figure I shows k,,,, . 
khcn and k,,,, versus log (z) for fiber volume fractions 

j’, = 0.2 and f’, = 0.4, respectively, and with k,,, 
obtained from the numerical work referred to above. 

3. CLUSTERING 

3.2. Weak clustrring 

When the local conductivity k does not vary much 
throughout the specimen, the total effective con- 
ductivity, in two dimensions, can be written [ 19. 201 

3.0 

2.5 

-L” 
, 2.0 
* 

1.5 

1 .o 
3. I. Volume fiuctions und cond.ictiL~ities mesoscole 0 0.5 1.0 1.5 2.0 2.5 on u 

We shall distinguish between three length scales ; a log 0: 

microscale which is of the order of the fiber radius R, FIG. I. The influence of stacking geometries (hexagonal, 
a macroscale of the order of the specimen size D, and square and random) of circular fibers on the transverse effec- 

between them a mesoscale L, such that R c L cc D. tive conductivity, expressed as ratios k,,,,'k: z k,,,;kz (b) and 

Clustering can be described by a properly averaged k,,,/kl (a), plotted vs log (r), for fiber volume concentrations 

fiber density J’(r). More specifically, consider a certain 
f; = 0.2 and 0.4, respectively. Were (x is the conductivity ratio 

plane perpendicular to the average fiber axes. Let,f’(r) 
between fiber and matrix. The figure also gives the ratio 
kchq/k2 (curves c) for square fiber cross sections in a checker- 

be the area fraction of fibers in a disk of radius I board geometry. 
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k& = (k) { *- (;)‘(k;$)“). (3) 

If we expand k,O,(r) in powers of c(r) =f(r) -(f), 
k,,, = k,,+&+(e*/2)k”, and keep terms to order E’ 

we get 

kerf = k,{ 1 - !(E2)[(P2/ki) - (k”/k,)l}. (4) 

Here k,, k’ = akjaf, and k” = a’kjaf * are evaluated 
forf= (f). We define a quantity B(E), 

B = (k’2/k;) - (k”/k,) (5) 

so that 

keff = k,{ 1 - :(e*)B@)}. (6) 

Forf, < 0.4 it is a very good approximation to write 

[ll 

k W = khex (7) 

where 

Then, from (7) 

T=l+cc. 
1-a (‘3) 

4% 
B = (r-j”,)2(T+S,)Z’ 

We note that B < 0. For infinite contrast, t( = cc and 
T = -1, one has B = -4fJ(l--_ff)*, which yields 
B = -0.868 and B = -2.27 for ,f, = 0.2 and 0.4, 
respectively. As an illustrating example, let f(r) vary 
sinusoidally in two perpendicular directions in the 
plane perpendicular to the fibers, between the extreme 
values fmin = 0.15 and fm,, = 0.25, with (f) = 0.2. 
Then (.s2) = l/1600, and the effect of a fluctuating 
f(r) on kex is negligible, even in the case of t( = cc. 

3.3. Strong clustering 

We next turn to strong clustering. As a specific 
example (Fig. 2) consider circular fibers clustered into 
a square array of two-phase circular ‘fibers’ which can 
now be regarded as a single phase i, with volume 

FIG. 2. A schematic illustration of a model for fiber clustering. 

0.0 v , I I I I 
0 0.5 1.0 1.5 2.0 2.5 

log ct 

FIG. 3. The effective conductivity of a clustered composite, 
k,,,, compared with stacked in a uniform square pattern, ksqr, 
here expressed as 1 -k,,,/ksqr, for several volume fractionsf, 

of the fiber, and withf, = 0.25. 

fractionf;. Inside phase i, the original fibers also form 
a square array. Conservation of the total volume frac- 
tionf, of the original fibers requires that their volume 
fraction in phase i is f, = f,/A. This geometry is chosen 
because it allows a numerical account of the effect of 
clustering, relying on the work on ksqr. (Cf. similar 
arguments for the clustering of spheres [21].) The 
overall effective conductivity of the clustered com- 
posite is k,,, = k,,,(k,,,(f,),f;, k,, a). Figure 3 shows 

1 - k,,,lk,q,, as a function of log tl for clustering such 

thatf, = 0.1,f3 = 0.25 andf; = 0.4. 
In an extreme clustering we could imagine that the 

fibers in the bundles that define the phase i are com- 
pletely fused together, so as to form new circular fibers 
consisting only of phase 1. Since krqr depends only on 
the volume fraction and not on the fiber radius itself, 
such a clustering would leave the effective conductivity 
of the composite unchanged. 

4. NON-ALIGNMENT OF FIBERS 

4.1. Long fibers with weak non-alignment 

Let the fibers be much longer than their diameter. 
Then it is an excellent approximation to obtain the 
effective transverse conductivity by a parallel coupling 
of the conductivities of a sequence of ‘slices’, 

k,, = (l/L) 
s 

’ kp(X) dx, (10) 
0 

where k,(x) is the effective conductivity per length of 
a ‘slice’, perpendicular to the fiber axes of the aligned 
fibers, and x is the position along those fiber axes. 

Consider a special case of non-alignment obtained 
as follows. Let the fibers extend from x = 0 to x = L 
and let all their centers at x = L/2 form a regular 
square lattice. The fibers are pivoted around their 
centers at x = L/2, so that the end points at x = L are 

moved to the points of the two-dimensional equi- 
librium distribution of disks considered by Kim and 
Torquato [ 14, 151 and referred to above. The fact that 
geometric constraints for the rigid bars may make a 
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few such connections impossible is of no importance 
for our qualitative conclusions. Now, from equation 

(10). 

k,,,, > kc,,_ > k,,, (11) 

since k,(L/2) = k,,, c k,,,= k,,(O) = k,(L). Hence, 
non-alignment starting from a square lattice con- 
figuration offibers increases the effective conductivity. 
If we instead start from a hexagonal lattice con- 

figuration, k,,, would also increase since we noted 
above that khex v k,,, for moderate f’, 

4.2. EJ&tice-medium tlwor~~ 
Consider a single fiber embedded in an effective 

medium consisting of the matrix and all other fibers. 
The axis of the single fiber forms an angle (I with the 
overall fiber direction. We let 0 vary according to a 
normalized distribution function 

The limit m -+ s corresponds to parallel fibers and 
T)Z = 0 to entirely disordered fiber axes directions. 
Using ordinary effective-medium arguments for fibers 
modelled as very prolate ellipsoids and averaging over 
all 0 in equation (12) gives expressions (Appendix 
1) from which the normalised effective conductivities 
Kc, = kcI ikZ in the longitudinal direction and 

K,, = kci,/k2 in the transverse directions can be 
obtained. We are primarily interested in nearly aligned 
fibers, i.e. large m. From equation (AlO), and in a 
series expansion which retains terms of order l/n], one 
obtains after some algebra. and with q = k,, ( x)/k:, 

[(n,-n)q+(n,$n)a](2y+l) 
(13) 

The mean deviation A0 from I) = 0 is given by 

Ill ! 
Au = ?“‘(jm+ I)!!’ 

Figure 4 shows [K, ,(AU)/K,,(O)] - 1 from equation 
(I 3) but expressed and plotted as a function of A0, 
calculated from equation (14) for a prolate ellipsoid 
with semiaxes ratio a/h = 10, fiber volume fraction 
,f, = 0.2 and conductivity ratios c( = 10, IO?, IO5 and 
zo. Clearly, the effect of non-alignment on the trans- 
verse conductivity is small only for not very large 
contrasts c( and for small misalignments A(). This is 
expected since non-aligned, highly conducting long 
fibers may touch and form a percolating path of high 
conductivity. 

06 / I I 1 

r, = 0.2 I 
/ 

0 1 2 ? 4 i 

AB Co) 

FIG. 4. The effect of fiber non-alignment on the transverse 
effective conductivity. The figure shows [k,,(AO),‘k,, (O)] - I 
as a function of the rms. non-alignment angle AH, for fiber 
volume fraction ,f’, = 0.2 and several conductivity ratios 2. 
and with fibers modelled as ellipsoids with aspect ratio IO. 

5. NON-IDEAL FIBER CROSS SECTION 

5. I. Dispersion in,fiber radius 
In the Hashin-Shtrikman coated-cylinder geometry 

(Fig. 5) there is an exact expression for the effective 
conductivity [lo] ; 

k,, = k,+~‘,[l!(k,-k?)+,/~,‘(2k2)] ‘. (15) 

Each fiber and its coating layer have the same volume 
fractions as in the entire material. The coated cylinders 

can take all sizes so as to allow a space-filling packing. 
k,,, also is a lower bound to kcff- if nothing is known 
about the geometry of the system except the volume 
fraction ,j’, and that the overall conductivity is 

isotropic. For small /‘,, k,,s agrees (to leading order 
in j’,) with the expression (2) when u = h, i.e. a dilute 
suspension of circular cylinders. Miller and Torquatn 
[9] and others have discussed improved lower bounds 
which contain information on the spatial correlation 
function for the fibers through a parameter <?. 

Consider circular fiber cross sections, but with vary- 

FIG. 5. Schematic illustration of the HashitGShtrikman 
coated-cylinder geometry. The coated cylinders have all sizes. 

so that the entire space can be filled with them. 
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ing radii. Miller and Torquato [9] calculated how the 
effective conductivity k,,, for a random distribution 
of aligned fibers is changed when the fibers are given 
a dispersion in their radii. We follow their approach, 
but consider equal numbers of two kinds of fibers, 
with radii r, or r2. The total volume fraction is con- 
served so that r:+r: = 2r& where r0 is the radius of 
the fibers in the case to compare with. The variation 
in fiber radius is assumed to be small, i.e. 
A = Ir2-r,l/r0 CC 1. We find that the dispersion in 
fiber radius gives 

(2 = :f2(1 +&A’). (16) 

Hence, a variation in fiber radius by + lo%, i.e. 
A = 0.1, gives an entirely negligible correction to i2 in 
equation (16). We conclude that such a dispersion has 
no significant effect on &. 

5.2. Elliptical and squarejber cross section 

Consider the dilute limit of parallel fibers with ellip- 
tical cross sections, equation (3), and let the aspect 
ratio be a/b = (1 +S)/( l-6). The largest effect of a 
non-circular cross section arises for the case of 
extreme contrast, t( = co. Then, to leading order in 
the small quantity 6, equation (2) takes the form 

k,, = k,[l+2.,(1 +S’/2)1. (17) 

As an example, letf, = 0.2 and a/b = ,514. Then k,,in 
equation (17) is larger than kefl of circular fibers by 
only 0.2%. 

We next turn to square fibers. In a previous work 
[ 161 we calculated the effective transverse conductivity 
k,,, when the fibers are stacked in a square array such 
that their cross sections form a checkerboard at the 
percolation threshold j& = 0.5 (Fig. 6). Extending 
those numerical calculations, we compare square and 
circular fiber cross sections and plot k,,,(f)/k,,,(f) - 1 
vs log (a) in Fig. 7. 

6. DISCUSSION AND CONCLUSIONS 

In Sections 2-5 we have considered various types 
of deviations from ideal fiber composite geometries, 
and their effect on the transverse thermal conductivity 

------_- 

I I 
I I 
I I 
I 
I I 
I I 
I I 

FIG. 6. A checkerboard geometry. 
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FIG. 7. Comparison between the effective conductivities k,,, 
and ksqr, referring to square and circular fiber cross sections, 
with fibers stacked in a square lattice, for varying log (u) and 

some fiber volume fractions f, 

kew. The effect is of course largest when the ratio tl 
between the conductivities of the fibers and the matrix 
is infinite (or zero). However, even in that case the 
non-ideal conditions often lead to corrections that 
are negligible from a practical point of view. We can 
exemplify this by taking a conductivity ratio tc = co 
and a fiber volume fraction f, = 0.2. Then a fiber 
concentration slowly varying as f, = 0.20f0.05, a 
dispersion in fiber radius by f 10% or a fiber cross 
section varying from circular to elliptic with semiaxes 
ratios 5/4, all affect the transverse conductivity by less 
than 1%. Only when the volume fraction or the fiber 
cross section is such that one approaches a percolation 
threshold does the non-ideal fiber geometry sig- 

nificantly affect the transverse conductivity. That may 
also be the case for long non-aligned fibers. Only for 
moderate contrasts (c( ,: 10) is the effect of a non- 
alignment given by A@ = 6” less than I %. 
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APPENDIX 

Using the effective medium theory [22] for three-dimen- 
sional elliptic inclusions (conductivity k ,) in a matrix (con- 
ductivity X,; contrast r = h ,:X,), one first expresses the con- 
ductivity tensor K, in (.t-‘.r’.z’) coordinates (cf. Fig. 8) as 

KC\ I L I K 
Kv / KY Kc, : 
Kc: \ Kc t Kc: ~ ) 

4, 

= QS, IS,, L+QS,‘, QS,,,S:, 

i 

+ QS: \ QS\ ,S, \ Q&.\& 

QS \S, t QS IS, \ K,, +QS;\ i 

(Al) 

Here S, / = cos 0, S, / = sin (1 cos cp. S. I = sin 0 sin cp, Kcil 
= K,\, Kc, = K,, = K,,. Further, K,,, = I +f,b,(x- l), K,, 
L 1 +.f‘&- I), p, = li[l +n,(cc- I)], /j = I/[1 +iI(r- I)]. 

Q = K,,, -Kc,. and n, and n = n, = nl are the depolarization 
factors in the longitudinal and transverse directions, 

FIG. 8. Coordinate system for a fiber modelled as a prolate 
ellipsoid. 

respectively. Then, averaging the conductivity tensor 
over angles 0 through the distribution function s(0) gives 

S,,S,, = 0 if i #,j and 

M = 1!(2m+3) if j :: j =- J’, ;’ 
s,,s,, = N= (2m+~);(2m+3) if;-,- y’ 

(A?) 

The resulting conductivity tensor is diagonal, with the com- 
ponents 

K, = I +.f,/l:(x- I). Kr, = I +f‘,/Y(r- I) (AX) 

where 

b: = N/(,+(1-N)/j. /I’= M/1,+(1 PM)/{. (A4) 

When 1?r = 0 (randomly oriented fibers with elliptic cross 
section), M = N = I/3, 8: = B’ = (fi\ +2/1)/3. When m = ‘% 
(parallel alignment) we get N = I, M = 0, /l: = p,. /j’ = fi. 
Then one finds the electric fields E, and the dipole moments 
f, for the directionally averaged ellipsoidal inclusion in an 
external field E,> 

E,, = I:&,,, P,, = p;(r- I)E,,,, i = .xy.z. (A% 

By ordinary effective medium theory [22] applied to the 
orthogonal directions .v. r and z. the self-consistent con- 
ditions to be satisfied are 

(P,,) =O, i=.x.>‘.:. (Ah) 

That yields the following equations for the effective con- 
ductivities : 

_ 3(1-K,,) 
+f2 ~jK 

.I 
-Tim = 0. (AX) 

In the case of a very prolateellipsoid (‘fiber’). ,I = l/2, II, = 0. 
and we get 


